21 research outputs found

    Spectral and timing properties of black-hole low-mass X-ray binaries

    Get PDF
    Low-mass X-ray binaries (LMXBs) are binary systems that consist of a compact object (i.e., a black hole or a neutron star) and a low-mass star (less than 1 solar mass), known as companion star, orbiting around a common center of mass. If the two components are close enough, the compact object accretes matter from the companion star forming an accretion disc that produces strong emission in X-rays. A hot electron plasma, called the corona, surrounds the compact object and the accretion disc. Energetic electrons in the corona interact with the photons coming from the accretion disc via inverse Compton scattering to produce the hard X-rays observed in these systems. The emission from the accretion disc and the corona varies with time, producing different spectral states.In this thesis, I study the evolution of the spectral and timing properties of LMXBs with a black hole as a compact object, the so-called black-hole low-mass X-ray binaries (BH LMXBs). The study of these properties allowed me to infer the nature of the compact object of these systems, as well as shed light on some phenomena that are not very well studied, such as Failed-Transition outbursts and reflares

    Variability and phase lags of the type-C quasi-periodic oscillation of MAXI J1348-630 with NICER

    Get PDF
    We study the properties of the type-C quasi-periodic oscillation (type-C QPO) of MAXI J1348-630 during its 2019 outburst and reflare with NICER. This is the first time that the evolution of the properties of type-C QPOs is studied during an outburst reflare. We found that the properties of the type-C QPO during the reflare are similar to those of type-C QPOs observed in other black-hole systems during outburst. This suggests that the physical processes responsible for type-C QPOs are the same in a reflare and in an outburst. We also found that the FWHM of a high-frequency broadband component observed during the reflare changes significantly with energy. We studied the energy-dependent fractional rms amplitude and phase lags of the type-C QPO from 0.5 keV to 12 keV. We found that the fractional rms amplitude increases up to 2-3 keV and then remains approximately constant above this energy, and the lag spectra of the type-C QPO are hard. We discuss the dependence of the fractional rms amplitude and phase lags with energy in the context of Comptonisation as the radiative mechanism driving the QPO rms and lag spectra

    Clockwise evolution in the hardness-intensity diagram of the black hole X-ray binary Swift J1910.2-0546

    Get PDF
    We present a detailed study of optical data from the 2012 outburst of the candidate black hole X-ray binary Swift J1910.2-0546 using the Faulkes Telescope and Las Cumbres Observatory (LCO). We analyse the peculiar spectral state changes of Swift J1910.2-0546 in different energy bands, and characterise how the optical and UV emission correlates with the unusual spectral state evolution. Using various diagnostic tools like the optical/X-ray correlation and spectral energy distributions, we disentangle the different emission processes contributing towards the optical flux of the system. When Swift J1910.2-0546 transitions to the pure hard state, we find significant optical brightening of the source along with a dramatic change in the optical colour due to the onset of a jet during the spectral state transition. For the rest of the spectral states, the optical/UV emission is mostly dominated by an X-ray irradiated disk. From our high cadence optical study, we have discovered a putative modulation. Assuming that this modulation arises from a superhump, we suggest Swift J1910.2-0546 to have an orbital period of 2.25-2.47 hr, which would make it the shortest orbital period black hole X-ray binary known to date. Finally, from the state transition luminosity of the source, we find that the distance to the source is likely to be ~4.5-20.8 kpc, which is also supported by the comparative position of the source in the global optical/X-ray correlation of a large sample of black hole and neutron star X-ray binaries.Comment: Published at MNRAS, 12 page

    Spectral and timing evolution of the black hole transient MAXI J1727-203 with NICER

    Get PDF
    MAXI J1727-203 is a new X-ray transient discovered on 5 June 2018. A hard-to-soft state transition at the beginning of the outburst led to the identification as a black hole candidate. MAXI J1727-203 was monitored with the Neutron Star Interior Composition Explorer (NICER) on an almost daily basis from the beginning of the outburst. We present a spectral and timing analysis of the full outburst of the source, which lasted approximately four months. A preliminary spectral analysis suggest that the accretion disk component can was detected throughout the entire outburst, with temperatures ranging from ~0.4 keV (in the soft state), down to ~0.2 keV near the end of the outburst when the source was in the hard state. The power spectrum in the hard state shows broadband noise up to 10 Hz, with no detection of any quasi-periodic oscillations. We argue that the system's characteristics are not consistent with those expected for a neutron star and that they are particularly reminiscent of the black hole X-ray binaries XTE J1118+480 and Cyg X-1

    Seven reflares, a mini-outburst and an outburst : High amplitude optical variations in the black hole X-ray binary Swift J1910.2-0546

    Get PDF
    We present long-term (2012-2022) optical monitoring of the candidate black hole X-ray binary Swift J1910.2-0546 with the Faulkes Telescopes and Las Cumbres Observatory (LCO) network. Following its initial bright 2012 outburst, we find that the source displayed a series of at least 7 quasi-periodic, high amplitude (~3 mags) optical reflares in 2013, with a recurrence time increasing from ~42 days to ~49 days. In 2014, the source experienced a mini-outburst with two peaks in the optical. We also study the recent 2022 outburst of the source at optical wavelengths, and perform a comparative analysis with the earlier rebrightenings. A single X-ray detection and only two radio detections were obtained during the 2013 reflaring period, and only optical detections were acquired in 2014. During the reflaring in both 2013 and 2014, the source showed bluer-when-brighter behavior, having optical colors consistent with a blackbody heating and cooling between 4500 and 9500 K, i.e. the temperature range in which hydrogen starts to ionize. Finally, we compare the flaring behavior of the source to re-brightening events in other X-ray binaries. We show that the repeated reflarings of Swift J1910.2-0546 are highly unusual, and propose that they arise from a sequence of repetitive heating and cooling front reflections travelling through the accretion disk.Comment: Accepted for publication in ApJ, appendix will appear at the published version of the pape

    A Multiwavelength Study of GRS 1716-249 in Outburst: Constraints on Its System Parameters

    Get PDF
    We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the optical/near-infrared and UV emission of the source mainly originates from a multi-temperature accretion disk, while the mid-infrared and radio emission are dominated by synchrotron emission from a compact jet. The optical/UV flux density is correlated with the X-ray emission when the source is in the hard state, consistent with an X-ray irradiated accretion disk with an additional contribution from the viscous disk during the outburst fade. We find evidence for a weak, but highly variable jet component at mid-infrared wavelengths. We also report the long-term optical light curve of the source and find that the quiescent i'-band magnitude is 21.39 +/- 0.15 mag. Furthermore, we discuss how previous estimates of the system parameters of the source are based on various incorrect assumptions, and so are likely to be inaccurate. By comparing our GRS 1716-249 data set to those of other outbursting black hole X-ray binaries, we find that while GRS 1716-249 shows similar X-ray behavior, it is noticeably optically fainter, if the literature distance of 2.4 kpc is adopted. Using several lines of reasoning, we argue that the source distance is further than previously assumed in the literature, likely within 4-17 kpc, with a most likely range of similar to 4-8 kpc
    corecore